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Abstract— Time sharing between cluster resources in Grid is
a major issue in cluster and Grid integration. Classical Grid
architecture involves a higher level scheduler which submits
non overlapping jobs to the independent batch schedulers of
each cluster of the Grid. The sequentiality induced by this
approach does not fit with the expected number of users and job
heterogeneity of the Grids. Time sharing techniques address this
issue by allowing simultaneous executions of many applications
on the same resources.

Co-scheduling and gang scheduling are the two best known
techniques for time sharing cluster resources. Co-scheduling re-
lies on the operating system of each node to schedule the processes
of every application. Gang scheduling ensures that the same
application is scheduled on all nodes simultaneously. Previous
work has proven that co-scheduling techniques outperforms gang
scheduling when physical memory is not exhausted.

In this paper, we introduce a new hybrid sharing technique
providing checkpoint based explicit memory management. It
consists in co-scheduling parallel applications within a set, until
the memory capacity of the node is reached, and using gang
scheduling related techniques to switch from one set to another
one. We compare experimentally the merits of the three solutions:
Co, Gang and Hybrid Scheduling, in the context of out-of-core
computing, which is likely to occur in the Grid context, where
many users share the same resources. The experiments show that
the hybrid solution is as efficient as the co-scheduling technique
when the physical memory is not exhausted, and is more efficient
than gang scheduling and co-scheduling when physical memory
is exhausted.

I. INTRODUCTION

Two of the most fundamental principles of Grid are 1) the
capacity to establish virtual organizations spanning over the
several administration domains in order to extend the number
of resources accessible by users and 2) the coordination of
these resources in order to cooperate in the resolution of user
problems. From these two principles eventually arises the need
for efficient and fair resource sharing mechanisms.

The first principle inevitably tends to increase the pressure
on the system mechanisms implementing the resource sharing
between users. In the general situation, the resources are
belonging to institutions and are already used by some of
their members. Thus, building virtual organizations on top of
already used resources increases the number of potential users
for these resources, leading to an increased requirement to
share these resources fairly among the users. In large system
within HPC centers, queues of jobs are already quite long.
It is not uncommon to wait days before having large jobs
done. If nothing is done in Grids associating tens of such

sites, the waiting time would certainly evolves from days to
weeks which in some circumstances will not be acceptable for
users. An other fairness issue concerns the capacity to establish
several level of priority between parallel executions on the
Grid. High priority execution should be able to preempt the
resource of a low priority parallel application under execution.

The second principle, as examined in the light of the first
one, implies the use of efficient coordination mechanisms
ensuring A) parallel application performance close to the one
obtained in a dedicated system and B) limiting strictly the
waste of computing resources by providing rapid parallel
applications context switch. In this paper, we restrict our
investigation domain to users running MPI applications on
clusters shared within a Grid virtual organization. We focus
on the following scenario: users submit their MPI jobs to
a meta-scheduler (from a portal) which schedules them on
dynamically selected clusters. Any MPI execution may span
over several clusters or stay within a single cluster. In the
first case, an efficient coordination mechanism should schedule
simultaneously all the components involved in each MPI exe-
cution. The efficiency in fulfilling criteria A) and B) depends
on the synchronization mechanism coordinating the scheduling
of the MPI subparts over all the clusters involved in the
execution and on the speed of context switch between the MPI
executions on each cluster. In the second case, clusters are not
synchronized and the efficiency of the Grid only depends on
the capability of each cluster management system to meet the
criteria A) and B).

Fairness and performance are in principle contradictory.
Reaching top performance on parallel execution involves ded-
icated usage of the cluster resources. The less the operating
system interrupts the application execution, the highest is
the performance. Usually, fairness relies on context switch
mechanisms enabling the resource sharing between users.
Context switching adds an overhead on the total application
execution time. The more context switches are experienced
during an execution, the more the application is slowed down.

Sharing fairly the cluster resources between multiple users
may be examined in two cases: 1) when the concurrent
executions of all users fit in the memory of the cluster nodes
and 2) conversely when disk storage should be used in addition
to the memory in the cluster nodes to store all concurrent
executions. We will call these two cases respectively in-core
and out-of-core context switch.
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The two principles lead to three main consequences: 1) a
fast mechanism for switching the context of MPI execution
on a cluster is the corner stone to meet efficiency criteria, 2)
because fairness and performance are contradictory objectives,
we should consider a metric representing a tradeoff between
them. For shake of simplicity, in this paper, we will consider
application with the same execution time and the following
ratio as the tradeoff metric : the execution time of a set
of parallel applications over the standard deviation of their
individual execution times and 3) in a Grid with lot of users,
it is likely that out-of-core context switch will be the general
case. Thus in this paper, we will essentially focus on this
context.

In this paper we study several MPI application context
switching techniques, trying to discover which one has the
lowest impact on application performance. We will demon-
strate that the best technique for out-of-core context switching
is a hybrid (two level) one mixing checkpoint based con-
text switching of sets of MPI executions and uncoordinated
scheduling (co-scheduling) of MPI executions within each set.

The second section presents the related works. Section III
presents the general framework used to compare the differ-
ent scheduling techniques. Section IV presents the different
scheduling approaches compared in this paper. Section V
presents the experimental results and section VI concludes and
sums up what we learned from the experiences.

II. RELATED WORK

There are several main techniques to implement parallel
application context switch in practice. One of the most used
one is batch scheduling, queuing the jobs submitted by the
different users. In the general case, after being elected for
execution, parallel jobs are scheduled subsequently (one after
the other). Thus, only one parallel execution runs on the cluster
at a given time. Example of existing implementation of batch
schedulers are PBS[1], LSF, Condor, etc. The main drawback
of the batch scheduling approach is its lack of fairness between
users submitting heterogeneous jobs. An application that needs
a large number of nodes but for a short period may have to
wait until all longer jobs running on fewer number of nodes
terminate before being allowed to run.

This paper focuses on another family of approaches which
lets the operating system schedules the processes of several
parallel executions launched concurrently, according to their
priorities. These techniques are called gang scheduling and
co-scheduling, depending on the scheduling coordination of
parallel execution processes. There is no coordination in co-
scheduling. In gang scheduling, processes of a given ap-
plication are scheduled simultaneously, requiring some syn-
chronization mechanism. In these techniques all concurrent
parallel applications reside in the cluster memory until their
completion, generally leading to a huge usage of the virtual
memory system.

[2], [3] has proposed one of the first implementation of
gang scheduling, called SCore. SCore targets clusters and
is based on a Network preemption procedure relying on the

PM communication library [4]. The gang scheduling itself is
performed using UNIX signal mechanism. When an applica-
tion have to be unscheduled, all it’s processes on all nodes
receive a SIGSTOP signal. Thus when another application
is scheduled by the reception of the SIGCONT signal, it
gets exclusive usage of computational power and network
resources. However, the memory is shared between running
and stopped applications. Memory sharing is resolved by the
virtual memory mechanism of the operating system, as inactive
applications may be transfered in swap memory. The gang
scheduling strategy we present in this paper explicitly stores
and reloads stopped processes, limiting the memory sharing
between applications. Our approach also does not rely on
operating system swapping mechanism. Another difference
compared to SCore is the network flush algorithm. SCore does
not use the Chandy & Lamport algorithm to flush the network,
but a three phases synchronization algorithm using the PM
flow-control protocol. The Chandy & Lamport algorithm we
implemented uses only one synchronization phase. In check-
point based scheduling typically, only one execution resides in
memory at a given time. Note that uploading and downloading
executions to and from the memory involves disk operations
which can add a significant overhead.

An example of gang scheduling evaluation on LLNL Cray
T3D can be found in [5].

[6] evaluates different scheduling policies using the LSF
batch scheduler. All policies are refinements of gang schedul-
ing techniques allowing each application to run solely on
the required processors. Three classes of applications are
considered: short (5 minutes termination expected time),
medium (60 minutes) and long running (no limit). The paper
studies different policies when an application with a shorter
termination expected time is queued. They demonstrate that
preemption, implemented with checkpointing techniques, is
crucial to obtain good response time. In this paper we extend
the notion of hybridness, mixing gang scheduling with co-
scheduling. The resulting approach could be adapted to work
within a batch scheduler. The experimental studies concerning
this issue will be presented in a future paper.

Co-scheduling, consists in launching all applications on
the system resources and letting each node operating system
scheduling the different jobs. The lack of coordination for the
simultaneous execution of all nodes job of an application is a
major drawback for synchronous operations, but this approach
allows better overlap communication of a job by computation
of another one (we assume that the communications are
buffered independently of the process scheduling, like in
kernel level protocol stacks). As the co-scheduling relies on
the operating system memory scheduling, running out-of-core
applications leads to high overhead due to the system swap
policy. [7] introduces different paging techniques to reduce
the number of page faults.

Some studies have compared and mixed gang scheduling
and co-scheduling. In [8] the authors analyze experimentally
that co-scheduling outperforms gang scheduling for clusters
and in-core running applications. Our study pushes this result
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in the case of out of core running applications, a major concern
for Grid systems as the number of users and tasks expands.
[9], [10], [11] consider determined classes of application based
on their communication and I/O characteristics. Thus they
improve gang scheduling of such known applications by co-
scheduling applications of different classes. In this paper, we
demonstrate that mixing the two techniques provides the best
performance in the out-of-core case, even if applications are
identical.

III. COMMON FRAMEWORK

In this paper, we focus on comparing and mixing two
scheduling methods for MPI application time sharing. The
first one is based on the ability to stop and restart a set of
MPI applications so that memory used by these applications
is available to another set of applications. At the end of a time
slice, a set of applications is dumped on disk, and another
set of applications is loaded from a previous checkpoint and
run during the next time slice. The second one is based on
running all MPI applications simultaneously on the same set
of nodes. This method relies on the operating system scheduler
to perform time sharing and is called co-scheduling.

The MPICH-V framework offers both stop and restart
capable and standard MPI implementations. It’s main focus
is comparison of different kind of fault tolerant protocols for
MPI. Deriving from this main purpose, we developed two non
fault tolerant protocols. One including distributed checkpoint
facility based on the Chandy&Lamport algorithm (Vcl [12],
[13]), and another one implementing basic MPI communica-
tion, without checkpoint capabilities (Vdummy). Using such
an implementation is mandatory to perform a fair comparison:
as the two implementations share the same framework, any
performance difference is related to the scheduling itself, and
not to implementation optimizations. Moreover, we compared

the MPICH-V framework to the reference implementation
MPICH-P4 in [13]. Figure 1 compares the architectures, while
figure 3 recalls these performances comparison between the
MPICH-V framework and the reference implementation, and
validates the checkpoint enabled MPICH-Vcl version perfor-
mance compared to standard MPICH-Vdummy version.

MPICH-V is based on the MPICH library [14], which builds
a full MPI library from a channel. A channel implements
the basic communication routines for a specific hardware or
for new communication protocols. MPICH-V consists in a set
of runtime components and a channel (ch v) for the MPICH
library.

The different protocols are implemented in the MPICH-
V framework at the same level of the software hierarchy,
between a MPI high level protocol management layer (man-
aging global operations, point to point protocols, etc.) and the
low level network transport layer. Among the other benefits,
this allows to keep unmodified the MPICH implementation
of point to point and global operations, as well as complex
concepts such as topologies and communication contexts. A
potential drawback of this approach might be the necessity to
implement a specific driver for all types of Network Interface
(NIC). However, several NIC vendors provide low level, high
performance (zero copy) generic socket interfaces such as
Socket-GM for Myrinet, SCI-Socket for SCI and IPoIB for
Infiniband. MPICH-V protocols typically seat on top of these
low level drivers. So this is one of the most relevant layer
for implementing new MPI capabilities if criteria such as
design simplicity, high performance, heterogeneous network
migration and portability are to be considered.

MPICH-V provides all the components necessary to stop
and restart MPI applications. Some of them have been slightly
modified to focus on the scheduling of MPI applications,
while some have been added, specifically to manage sets of
applications.

A. Dispatcher

The dispatcher of the MPICH-V environment has two main
purposes: 1) to launch the whole runtime environment (en-
compassing the computing nodes and the auxiliary ”special”
nodes) on the pool of machines used for the execution, and
2) to monitor this execution, by detecting node disconnection
and then stop the execution.

The Dispatcher is in charge of a single MPI application. If
more than one application is running at a time on a cluster,
each is controlled by it’s own Dispatcher.

B. Driver

The driver is the part of the MPICH-V framework linked
with the MPI application. It implements the Channel Interface
of MPICH. Our implementation only provides synchronous
functions (bsend, breceive, probe, initialize and finalize), as
the asynchronism is delayed to another component of the
architecture.
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C. Communication daemon

The core of the communication daemon is a select loop: it
manages one socket for every computing node and one socket
for every specific components. Every send or receive opera-
tion is asynchronous. Thus, a communication is not blocked
by another slower one. At the contrary, the communication
across the Inter Process Communication mechanism to the
MPI process is synchronous and its granularity is the whole
protocol message. The communication daemon is in charge of
all distributed checkpoint mechanisms.

The checkpoint of the daemon uses an explicit serialization
of its data and when a checkpoint is requested, some messages
have to be logged on the receiver (considered as the in-transit
messages of the Chandy-Lamport algorithm).

a) The generic Communication daemon: Daemons im-
plements a generic communication layer to provide all the
communication routines between the different kind of com-
ponents involved in the MPICH-V architecture, independently
of the protocols. Checkpoint enabled protocols are designed
through the implementation of a set of hooks called in relevant
routines of the generic layer and some specific components
(figure 1).

The collection of all these functions is defined through a
fault tolerance API and each protocol implements this API. In
order to reduce the number of system calls, communications
are packed using iovec related techniques by the generic
communication layer. The different communication channels
are multiplexed using a single thread and the select() system
call. This common implementation of communications eases
the implementation of protocols and allows a fair comparison
between them.

D. Checkpoint scheduler

The checkpoint scheduler requests computation processes
to checkpoint according to a given policy. The policy is
protocol dependent. In this article, the checkpoint scheduler
uses a coordinated checkpoint policy driven by the Master
Dispatcher, intended to checkpoint an application before it is
stopped at the end of a time slice.

E. Master Scheduler

The Master Scheduler is a new component introduced in
the MPICH-V architecture in order to target Grid schedul-
ing. The master scheduler coordinates the scheduling of all
the applications on the system. Given a list of applications
to schedule, it first launches the dispatcher and checkpoint
scheduler component of each application. The application
deployment itself is performed by the Dispatcher of this
application (figure 2).

The number n of job to run simultaneously is given as
parameter of the master scheduler. The Master Scheduler
associates a time slice to each application. When a scheduled
application has been running long enough to expire its time
slice, the Master Scheduler requests the Dispatcher and the
Checkpoint Scheduler to stop this application. When it is
stopped, the Master Scheduler requests another Dispatcher to
restart the associated application, and the time slice for this
application begins.

The Master Dispatcher implements various policies for
stopping/restarting applications. It is possible to Co-schedule k
applications of a set of n. To perform set context switch, three
checkpoint/restart overlap policies are implemented. These
policies are detailed in section IV-B.2.

IV. THREE TECHNIQUES OF SCHEDULING

We study three different kinds of scheduling for sharing
multiple MPI application on a single set of nodes. Two of
them, co-scheduling and gang scheduling, were compared
in the context of clusters and using applications with low
memory usage in [8]. These two techniques were not studied
in the context of a large memory usage, leading to out-of-core
computation when many applications runs simultaneously.
We propose a new hybrid method based on the mix of the
co-scheduling and the gang scheduling. The main idea is
to limit the number of concurrent co-scheduled applications
using gang scheduling global time slice and checkpoint related
techniques, so that physical memory would not be exhausted
by co-scheduling all applications.

A. Literature techniques of time-sharing

1) Co-scheduling: The first one, called co-scheduling con-
sists in an uncoordinated approach. The processes of each
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application are launched simultaneously on all nodes. On each
node, the local operating system scheduler is in charge of shar-
ing resources between the processes of different applications.
Thus processes of an application may not be scheduled at the
same time on all nodes, which could impact performances
of applications using a tightly synchronized communication
scheme. Moreover, the frequent context switches between
processes may introduce many cache faults. Nonetheless, This
technique requires no specific implementation, and computa-
tional and network resources may be better used, like in the
multi-threaded programming scheme.

To perform comparison of this technique to others, we used
the MPICH-V environment. The MPICH-Vdummy implemen-
tation does not include any checkpoint or time-sharing ability,
and is a good candidate to perform a fair comparison with the
other scheduling techniques we study. The Master Scheduler
uses a policy which just spawn all applications on the nodes
simultaneously, and then waits for termination, relying on
local node’s operating system to schedule processes of all
applications.

2) Gang scheduling: The second approach is called gang
scheduling. It consists in synchronizing all local scheduler
so that all processes of a single distributed application are
scheduled simultaneously, while all other applications are
stopped and sleeping. All resources are thus employed on the
execution of a single application, avoiding the wait for mes-
sages from a process not scheduled on another node. However,
no multi-thread effect is possible as only one application is
running at a time. As discussed in [8], on many applications,
the co-scheduling technique outperforms gang scheduling, as
applications do not perfectly overlap communications with
computation.

Gang scheduling is implemented in the Master Scheduler
of the MPICH-V framework.

B. New hybrid technique of time-sharing for high memory
requirement

In this method, we propose to use co-scheduling for in-
core computation, as it has been proven to be more efficient
than gang scheduling. When out-of-core computation would
appear using co-scheduling, we use a gang scheduling related
technique to enforce that only a subset of the applications
is running on the nodes. As the overhead induced by the
applications switch is related to time to store process memory
on local disk, it is much higher than node operating system
context switch overhead. As a consequence, time slices have to
be much longer. Thus, gang scheduling is mandatory to reach
good performance for any communicating application. Waiting
for a message during the full time slice of an application would
lead to very poor network performance.

The figure 4 presents a typical deployment of the hybrid
architecture. In this example we suppose that physical memory
size allows to run two simultaneous co-scheduled applications
without inducing out-of-core computation.

The Master Scheduler controls Dispatchers and Checkpoint
Schedulers of each application, enforcing some applications to
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be stopped and swapped out of memory, while some others are
restarted. We explain in section IV-B.2 different methods to
swap out of memory an application. For the set of applications
that are running, their processes are co-scheduled by each node
operating system.

1) Network management of application switching: To stop
an application, network status have to be saved. We use
the Chandy&Lamport algorithm to flush network before the
application is stopped. The Checkpoint Scheduler and the
communication daemons are dedicated to save the network
state. The checkpoint scheduler requests every communication
daemon to take a global snapshot by sending a tag in each
communication channel. On the reception of this tag, a daemon
stops the computing process, and then sends the tag in every
communication channel. When the checkpoint scheduler have
received a tag from every communication daemon, the network
flush is achieved.

2) Memory management of application switching:
a) SIGSTOP/SIGCONT policy, system memory manage-

ment: In previous implementations of gang scheduling, each
process of an application are stopped by the SIGSTOP UNIX
signal. In the case of large memory consumption, memory
sharing is managed by operating system swap policy. As
running applications were swapped on disk during the previous
time slice, the memory pages are reloaded on demand during
the execution (thus swapping out some pages used by stopped
applications). The number of page faults has a major impact
on overall performance. The overhead using this technique is
very unpredictable as it relies on operating system swapping
policy. Moreover, relying on SIGSTOP/SIGCONT mechanism
would introduce perturbations in our page fault measurements,
as it is difficult to differentiate out-of-core computation and
context switch induced page faults. Thus, we prefer to use a
checkpoint based technique, which overhead is well bounded.

b) Checkpoint policies, explicit memory management:
In our implementation, we use checkpoint/restart to explicitly
manage memory swapping of applications memory. When a
computing process is requested to be stopped, it performs
a checkpoint to local disk, thus freeing all memory it uses.
Complete memory of process to be scheduled in the next
time slice is reloaded from checkpoint, thus no page fault
occurs during the time slice. Incremental checkpoint related
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techniques may be used to improve checkpoint performances.
This memory management is equivalent to aggressive paging
out technique described in [7].

Many policies may be used to overlap checkpoint, restart,
and computations. Figure 5 presents the three techniques
implemented in the comparison framework. The first method
(called sequential checkpoint/restart) does not overlap check-
point and restart. It avoids to load the two applications simul-
taneously in memory at the expense of serializing checkpoint,
restart and computation during the context switch.

The second technique (called overlapped checkpoint/restart)
overlaps checkpoint and restart, trying to reduce context switch
cost. It requires more memory as one application is reloaded
before the previous is fully flushed out of memory, and induces
simultaneous disk accesses.

The third technique (called predictive restart prefetch) tries
to prefetch restart during the end of the time slice of the previ-
ous application, so that restart is overlapped by computation of
the application to be stopped, and checkpoint is overlapped by
computation of the next application. It has to rely on an oracle,
predicting time to restart, and induces simultaneous memory
usage during the end of the time slice of the application to be
stopped.

These three techniques are compared in section V-B.
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V. PERFORMANCE EVALUATION

A. Experimental conditions

We present a set of experiments in order to evaluate the
different components of the system.

Experiments are run on a 32-nodes cluster. Each node is
equipped with an Athlon XP 2800+ processor, running at
2GHz, 1GB of main memory (DDR SDRAM), and a 70GB
IDE ATA100 hard drive and a 100Mbit/s Ethernet Network
Interface Card. Swap space is set to 10GB. All nodes are
connected by a single Fast Ethernet Switch.

All these nodes use Linux 2.4.21 as operating system. The
tests and benchmarks are compiled with GCC 2.95-5 (with
flag -O3) and the PGI Fortran77 compilers. All tests are run
in dedicated mode. Each measurement is repeated 5 times and
we present a mean of them.

The first experiments are synthetic benchmarks analyzing
the individual performance of the subcomponents. We use
the NetPIPE [15] utility to measure bandwidth and latency
of the MPICH-V framework. This is a ping-pong test for
several message sizes and small perturbations around these
sizes. The second set of experiments is the CG and BT
kernel and application of the NAS Parallel Benchmark suite
[16], written by the NASA NAS research center to test high
performance parallel computers. These two benchmarks cover
a wide spectrum of applications and communication patterns.
Each process of a BT benchmark uses 175MB of memory
for class C on 25 nodes, 135MB for class B on 9 nodes,
and each process of CG class C on 8 nodes uses 157MB. A
node has 1GB of memory (900 MB of user space memory).
Thus up to five simultaneous applications fit in physical
memory whatever the application we use. Moreover from 7
simultaneous applications, swap is always used.

B. Checkpoint/restart overlap scheduling policy

Figure 6 presents the performance of NAS benchmark BT
class C on 25 nodes for the three application context switch
policies of Checkpoint/Restart presented in section IV-B.2.b.
On the first figure, two concurrent applications are gang
scheduled. On the second figure, 5 applications of 10 are run
simultaneously, thus filling physical memory.

When physical memory is not exhausted by computing
applications, as expected, the more overlap is reached, the bet-
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Number of

applications

Average number of major page faults for all nodes of each application, per minutes Average page faults per Standard

app 0 app 1 app 2 app 3 app 4 app 5 app 6 app 7 app 8 minutes, All applications deviation

7 8.5 239.5 264.25 951 1145.25 1245.5 1074 704 474.9

9 484.58 405.94 564.78 524.4 510.66 577.26 506.94 481.84 509.4 507.4 47.1

Fig. 8. Page faults statistics for simultaneous BT class C on 25 nodes
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Fig. 9. Makespan for n simultaneous applications using Co-scheduling, Gang scheduling or Hybrid-scheduling.

ter performance is. Thus, the Overlapped Checkpoint/Restart
method performs better than Sequential Checkpoint/Restart,
and the Predictive Restart Prefetch method performs better
than the two others. Moreover, it is better to use a greedy
prefetch than an exact one, as the predicted checkpoint time
may vary around the mean value.

When running multiple applications up to exhaust physical
memory, the overlapping strategies do not perform as well.
The finishing application stays in memory during its check-
point, thus inducing memory swapping for computing restarted
applications. Moreover, the restart prefetch strategy suffers
from a dramatic overhead related to the very intensive memory
usage induced by the simultaneous execution of applications
at the end of their time slice and applications beginning a new
time slice. Concurrent applications swapping on disk increase
the checkpoint time, while checkpoint and restart accesses on
disk decrease swapping performance. Thus, the more the disk
is accessed simultaneously, the more the overall performance
is decreased. As it sequentializes both disk access and memory
usage, the sequential policy performs better when physical
memory is near to be filled.

C. Scheduling techniques performance comparison

Figure 7 presents the computation time of n simultaneous
BT class C on 25 nodes benchmark. When the memory used
by the concurrent applications fits in-core, the computation
throughput increases slightly with the number of applications.
For 7 simultaneous applications, the overall throughput is
decreasing, and for 9 simultaneous applications, the makespan
is twenty times the sequential batch scheduling makespan. The
figure 8 explains this result. It presents the average number
of major page faults per minute for 7 and 9 simultaneous

applications using Co-scheduling. On one hand, for 7 Co-
scheduled applications, only a subset of the applications hits
the swap: the first application does not suffer from any page
fault (8.5 page faults per minutes), while another suffers from
more than 1245 page faults per minutes. On the other hand,
for 9 Co-scheduled applications, all applications hit the swap
equally (Standard deviation is less than 47.1 for an average
page faults per minute of 507.4). This outlines the lack of
fairness of the virtual memory management used in the Linux
2.4.21 kernel when only a small amount of swap is used. This
algorithm reaches good performance by scheduling more the
in-core applications, at the cost of serializing executions. When
memory occupation leads the size of the page cache table to
reach its lower bound pages table low, the virtual memory
manager applies a first ”gentle” policy, which is the case for 7
simultaneous applications. For 9 simultaneous applications and
above, the upper bound pages table high is reached, setting the
virtual memory manager in an ”aggressive” (but fair) swapping
policy. In this case, all applications have fair access to physical
memory, but performance suffers from a dramatic decrease.
Even if these bounds may be tuned, at some point, the kernel
has to switch to the aggressive policy, in order to ensure
availability and fairness.

Figure 9 presents the computation time of n simultaneous
NAS benchmarks, using co-scheduling, gang scheduling or hy-
brid scheduling. Hybrid scheduling relies on operating system
scheduler for executing a set of 5 applications simultaneously,
in order to occupy all the physical memory without inducing
out-of-core computation. The sequential Checkpoint/Restart
policy is used to perform set of applications context switch.
Time slices are 900 seconds.

For the CG benchmark (figure 9(a)), the co-scheduling
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method reaches good performance up to use about 3 times the
physical memory (2800MB). Comparing to the BT benchmark
results (figure 7), this outlines that the point of inefficiency
of co-scheduling is tightly related to the pattern of memory
accesses. The application uses often the same pages, reducing
the number of page faults. However, for these two applications,
the huge impact on co-scheduling of the kernel aggressive
swapping policy is observed. When co-scheduling is outper-
formed, gang and hybrid scheduling techniques reach the same
performance. This outlines that there is almost no benefit of
co-scheduling a subset of applications for this benchmark. In
CG, communication prevails, thus the bandwidth is divided
between co-scheduled applications.

The figure 9(b) focuses on performance comparison be-
tween gang scheduling and hybrid scheduling when co-
scheduling is outperformed due to out-of-core computation
for the BT benchmark. For each time slice, gang scheduling
and hybrid scheduling have to checkpoint and restart one
application. During that time slice, no swap effect occurs, as
the number of applications running simultaneously is either
one for gang scheduling or fits in-core for hybrid scheduling.
Obviously, the performance is exactly the performance of
pure gang scheduling compared to pure in-core co-scheduling.
Unlike the CG benchmark, computation prevails in the BT
benchmark. For this kind of applications, hybrid scheduling
performs 20% better than gang scheduling.

For every benchmark, overall throughput is equal or better
to sequential scheduling when using hybrid scheduling.

VI. CONCLUSION

In this paper, we compare several scheduling techniques
for the Grid. Some well known as gang scheduling (which
schedules a whole single application on all nodes at a given
time) and co-scheduling (which schedules all applications
simultaneously on all nodes). We propose a new scheduling
approach, based on the two previous, that we call hybrid
scheduling.

Hybrid scheduling consists in splitting the set of applica-
tions to schedule in subsets, co-scheduling the applications
of a same subset and gang scheduling the different subsets.
The main decisive factor is the amount of physical memory
used by all the processes of a same subset. The technique
uses user-mode checkpoints to stop and restart gang scheduled
applications. Using three different policies, we studied exper-
imentally the merits of overlapping or not the checkpoint and
restart during gang scheduling context switch.

We conducted a set of experiments using the NAS parallel
benchmarks. We show that for out-of-core computation, co-
scheduling behaves accordingly to the swap policy of the
operating system, and is eventually hit by very poor perfor-
mance. We show that according to the application computation
communication ratio, hybrid scheduling compares favorably
or equally to gang scheduling. Comparing to sequential batch
scheduling, hybrid scheduling reaches slightly better or equal
throughput, and offers a better fairness.

We plan to improve the master dispatcher, in order to
dynamically adapt the number of applications running con-
currently to the memory occupation of nodes. Another issue
is the gang scheduler context switch efficiency, so we plan to
compare user-space checkpoint techniques to optimized kernel
swap algorithm in the context of overflowed physical memory.
Finally, we plan to integrate our hybrid scheduling system into
a meta batch scheduling system for the grid, to compare the
fairness, reactivity and performance of such a system with
classical batch scheduling.
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